
Dash Board Scripter's Guide - 1 -

DASH BOARD SCRIPTER'S GUIDE

Version 1.5, March 1, 1999
Dash Board version at publication time: 1.5

©1998, 1999 Five Speed Software, Inc

Dash Board Scripter's Guide - 2 -

ABOUT THIS BOOK
The Dash Board Scripter's Guide is intended to help you get the most out of
Dash Board's scripting capabilities. In the sections that follow, you'll read about
topics that will help you create Dash Board scripts. This book covers how Dash
Board loads and executes scripts, what special methods are available to make
your scripting tasks easier, and some limitations of Dash Board's "Import"
function.

This book assumes you have a working knowledge of NewtonScript, the
programming language used to create most Newton applications and the one
that is used to create Dash Board scripts. If you are unfamiliar with NewtonScript,
we recommend checking out the book Programming for the Newton Using
Macintosh, 2nd Edition, by Julie McKeehan and Neil Rhodes (ISBN 0-12-
484832-X). A volume for Windows users may also be available.

It is also assumed that you have a working knowledge of Dash Board and the
Dash Board script editor. The mechanics of how to use the Dash Board script
editor are covered in the Dash Board User's Guide, available from the Five
Speed Software web site (http://www.fivespeed.com).

Even if you are new to NewtonScript, you may find helpful information at the
Dash Board scripting page (http://www.fivespeed.com/dashboard/scripting.html).

Dash Board Scripter's Guide - 3 -

INTRO TO SCRIPTING WITH DASH BOARD
The Script Frame

A Dash Board script is simply a bit of NewtonScript source code. When a script
is chosen from the Newton Menu or Letter Launcher, Dash Board looks up the
soup entry, reads the source code, and compiles it into a function object.

Assuming there are no errors in compilation, Dash Board then creates a script
frame. A script frame is a frame containing various slots, as described below.
One of those slots contains the function object that resulted when the script code
was compiled.

Dash Board then sends a message to the frame, to execute that function object.

Let's look at the script frame (items between the "<>" are English representations
of the slot's contents):

a Dash Board script frame
scriptFrame :=

{
_proto: <reference to Dash Board itelf>,
_parent: <reference to root (GetRoot())>,
|scriptFunc:FiveSpeed|: <function - the script>
|scriptName:FiveSpeed|: <string - the script name>,
icon: NIL,
stroke: NIL,
parm: NIL,
config: {text: "Dash Board does not support this

GestureLaunch feature"},
scriptclass: NIL,
word: NIL,

};

In the above script frame, note that the _proto slot contains a reference to Dash
Board itself. This allows scripts to access inherited methods and data from the
Dash Board application itself, through proto inheritance. The methods you can
use this way in your scripts are covered later in this book.

Next note that the _parent slot of the script frame contains a reference to the
root view. This allows the script to access inherited methods and data from the
root view. For example, scripts can call the Notify() root method like this:

using parent inheritance to access a root method

Dash Board Scripter's Guide - 4 -

:Notify(3, "A Notify Alert", "I am inheriting the Notify
method from the root view.");

The next two slots are also significant. The |scriptFunc:FiveSpeed| slot
contains the actual function object that Dash Board created when it compiled the
script source code. When Dash Board runs a script, it creates the script frame
depicted in Figure 1, then sends this frame the |scriptFunc:FiveSpeed|()
message.

The |scriptName:FiveSpeed| slot contains a string which is the text name
of the script. This is the name that appears in the Newton Menu, and in the list
box in the Dash Board Prefs app's Scripts panel.

The icon, stroke, parm, config, scriptclass, word slots are all
NIL. These slots are not used in Dash Board. They are provided solely for
compatibility with imported GestureLaunch 3 scripts, which may expect to find
these slots in the script frame.

While your script is executing, the value of self is a reference to the script
frame. However, please note that when the script has finished executing, the
script frame is disposed of--it is not kept in memory.

The Dash Board Scripts Soup

Dash Board stores its scripts in a soup. The soup entries are frames with the
following format:

Dash Board script soup entry format
{

name: <string - the text name of the script>,
scriptText: <string - the script source code>,
id: <symbol - the script's unique ID>,
date: <integer - time in seconds when script was first

saved>,
info: <string - informational description of script>

}

The name slot contains the text name of the script. The actual code is stored in
the scriptText slot.

The date slot is filled automatically by Dash Board when you create a new
script.

Dash Board Scripter's Guide - 5 -

The info slot contains a string that should contain a brief informative description
of the script, for the user.

The id slot contains a symbol that should be unique, so it should contain a
variant of your unique developer's signature. For example, Five Speed
Software's unique developer signature is "FiveSpeed", so a script written by Five
Speed Software might have the id '|SomeScript:FiveSpeed|. The
standard way to make a unique symbol is to append a colon (":") and your unique
signature to the end of it.

If you do not have a unique developer's signature, and you think you might want
to distribute your Dash Board scripts at some point, we encourage you to register
with Apple Computer, Inc. for a registered developer signature.

We encourage you to do this as soon as possible, as Apple has been very
lackluster in supporting the Newton after its discontinuation. We think that there
is a danger that they will stop maintaining the Newton developer signature
registry at some point. Although all Newton users and developers should express
suitable outrage if that actually occurs, and insist that they continue maintaining
the registry, it would seem prudent to register for a unique developer signature as
soon as possible. (Also, be kind to the actual folks who process your registration-
-they don't have anything to do with Apple's poor treatment of Newton users and
developers.)

As of this writing, the proper way to apply for a unique developer's signature is to
send email to NewtonDev@apple.com and request one. You should include
your name, company name, address, and top three choices for a unique
signature (in case your first choice is already taken).

Note that you should keep your signature short; 8 characters or less is probably a
good idea.

Apple can take a very long time to respond; please be patient.

NOTE: As of this writing, it’s possible that Apple may never respond, as they
have almost completely stopped supporting the Newton platform in any way. If
you are unable to get a unique signature, choose something that is probably
unique. The name-signature combination only needs to be unique among Dash
Board scripts, so problems are not likely.

Dash Board Scripter's Guide - 6 -

USING INHERITED DASH BOARD METHODS
Dash Board 1.5 provides five methods which you can use in your scripts:

DashBoardDoDialog() - prompts the user for input and returns a value

DashBoardGetScriptResult() - executes another script, and returns the
resulting value

DashBoardDoSpecialItem() - executes a Dash Board Special Item, and
returns NIL

DashBoardInsertText() - inserts text at the caret, in a standard text entry
view such as the Notes app, or in an editable TXview, such as those used by the
Works app

DashBoardFakePNButton() – This command is for users of PowerNames,
the Names enhancement from SilverWARE (http://www.silverware.com). It
simulates a tap on the special PowerNames button bar icon.

As shown in the preceding chapter, your scripts can access these built in Dash
Board methods through proto inheritance. You should call these methods simply
by sending a message to the script frame, so all that is required is a trailing colon
(i.e., sending the message to self, which is the script frame). Thus, the following
code is sufficient:

Figure 3. - calling a method inherited from Dash Board
:DashBoardDoSpecialItem('cmdNewChecklist);

NOTE: You may "discover" other Dash Board methods which can be called from
your scripts. Please do not do this. All of the methods designed to be called from
Dash Board scripts begin with "DashBoard". Calling other internal Dash Board
methods from scripts can crash Dash Board or have other undesirable
consequences.

Dash Board Scripter's Guide - 7 -

The DashBoardDoDialog() Method
This method displays a modal dialog, with a prompt, an input line for the user to
enter an answer, a cancel button, and an enter button. The dialog can be
customized depending on the arguments your script supplies. The arguments to
this method are described below.

aScriptFrame:DashBoardDoDialog(theValType, theMessage, theTitle,
theAnswer, theCancelBtnTxt, theOkBtnText)

aScriptFrame - the script frame. You can just use :DashBoardDoDialog without
explicitly specifying this.

theValType - the value type you want returned. Supported values for this
argument are 'string, 'integer, 'real, and 'symbol, which causes Dash
Board to return the user input as a string, integer, real number, or symbol,
respectively. If theValType is NIL, then the default return value type is string. If
the text entered by the user cannot be coerced into the proper value, the dialog
prompts the user to change the entered text.

theMessage - A string, which is the message that should be displayed in the
dialog. If this argument is NIL, the dialog uses the default text, "Enter a value in
the entry field provided."

theTitle - A string, which is the title displayed at the top of the dialog slip. If this
argument is NIL, the dialog uses the default text, "Script Input".

theAnswer - A string, which is the default answer provided in the input line of the
dialog when it is opened. If this argument is NIL, the dialog's input line is empty
when it is first opened.

theCancelBtnTxt - A string, which is the text shown on the cancel button. If this
argument is NIL, the default text is "Cancel". Note that if you provide a string that
it too long, it will be truncated to fit. The maximum width of the button is slightly
less than half the width of the dialog.

theOkBtnText - A string, which is the text shown on the enter button. If this
argument is NIL, the default text is "Enter". Note that if you provide a string that it
too long, it will be truncated to fit. The maximum width of the button is slightly
less than half the width of the dialog.

Dash Board Scripter's Guide - 8 -

If the user taps the enter button, DashBoardDoDialog() returns the value
entered by the user, coerced to the type specified by the theValType argument.
Otherwise, if the user taps the cancel button, this method returns NIL.

The following code produces the dialog shown below:

Figure 4. - a generic use of the DashBoardDoDialog() method
:DashBoardDoDialog(NIL, NIL, NIL, NIL, NIL, NIL);

Dash Board Scripter's Guide - 9 -

Taking advantage of the customization options of this method, we can create a
more interesting dialog:

Figure 5. - using DashBoardDoDialog() with parameters specified
:DashBoardDoDialog('string, "Isn't Dash Board cool?",
"Stupid Question Dialog", "Yes, very", "I Refuse To
Answer", "Enter My Answer");

The DashBoardDoDialog() method should be useful when you want to write a
script that requires some user input; for example, a Reminder script might prompt
the user for the number of minutes later that they want to be reminded, and then
set a system alarm for that number of minutes in the future.

Dash Board Scripter's Guide - 10 -

The DashBoardGetScriptResult()
Method

This is a potentially very powerful method, that allows one script to have Dash
Board execute another script and return the result to the first script, which can
then use that data for whatever it needs to do.

This could be used to create a library of scripting tools; you could create simple
component scripts to perform complex tasks you often use in your scripts, and
then call these scripts from other scripts with a single line of code.

The DashBoardGetScriptResult() method can lookup a script by name, ID, or
both. The method and its arguments are described below.

aScriptFrame:DashBoardGetScriptResult(scriptName, scriptID)

aScriptFrame - the script frame. You can just use
:DashBoardGetScriptResult without explicitly specifying this.

scriptName - a string, that is the name of the script to be executed.

scriptID - A symbol, which is the ID of the script to be executed.

Either of the arguments to this method can be NIL, but not both. If only
scriptName is specified, then Dash Board will execute the first script it finds that
matches that name (which would generally be the one with the earliest creation
date). If only scriptID is specified, then Dash Board will execute the first script it
finds with the matching symbol in its id slot. Hopefully, that would ensure that it
is the right script, as script IDs should be unique. However, just in case, you can
supply both a name and an ID, which provides the most assurance that the script
executed will be the right one.

This method returns the value returned by execution of the script requested. If
the script cannot be found, this method returns the symbol
'|scriptNotFound:FiveSpeed|.

example of calling a script from another script:
local theResult := :DashBoardGetScriptResult("Days Since
Last Backup", '|LastBackup:FiveSpeed|);
if IsInteger(theResult) and theResult > 7 then

:Notify(3, "Backup Reminder", "Hey, you really should
back up soon!");

Dash Board Scripter's Guide - 11 -

The DashBoardDoSpecialItem()
Method

The DashBoardDoSpecialItem() method allows you to programmatically execute
a Dash Board special item.

aScriptFrame:DashBoardDoSpecialItem(specialItemSymbol)

aScriptFrame - the script frame. You can just use
:DashBoardGetScriptResult without explicitly specifying this.

specialItemSymbol - a symbol, which specifies the special item to execute. This
symbol must be one from the list below.

This method always returns NIL.

example of the DashBoardDoSpecialItem() method:
:DashBoardDoSpecialItem('cmdNewChecklist);

Valid Special Item Symbols

NOTE: This list contains symbols for all valid symbols you can use with this
method, for completeness; however, in some cases it is easier to just write the
code yourself. For example to reboot the Newton, you could use the code
:DashBoardDoSpecialItem('cmdReboot);, but it would be easier to simply
use Reboot().

An asterisk (*) indicates that this command can be used with this method, but
has no corresponding Special Item

symbol - corresponding Dash Board Special Item
'cmd61 - -10061 Fix
'cmdAbout - About Dash Board
'cmdAlignPen - Align Pen
'cmdBLOff - Backlight Off
'cmdBLOn - Backlight On
'cmdBLToggle - * toggles backlight state
'cmdBtnsL - * same as choosing "Buttons Left" from Rotate menu
'cmdBtnsR - * same as choosing "Buttons Right" from Rotate menu
'cmdClearRecent - * same as choosing "Clear Recent Menu"
'cmdConnect - Connect
'cmdCtrlsL - * same as choosing "Controls Left" from Rotate menu
'cmdCtrlsR - * same as choosing "Controls Right" from Rotate menu

Dash Board Scripter's Guide - 12 -

'cmdGuestModeOff - HWR Guest Mode Off
'cmdGuestModeOn - HWR Guest Mode On
'cmdKbd1 - Keyboard
'cmdKbd2 - Keyboard (Numeric)
'cmdKbd3 - Keyboard (Phone)
'cmdKbd4 - Keyboard (Date)
'cmdLLHelp - Show LL Shortcuts
'cmdMIAAG - MI At A Glance
'cmdMICall - MI New Call
'cmdMIEvent - MI New Event
'cmdMIMtg - MI New Meeting
'cmdMITodo - MI New Todo
'cmdMute - Volume Mute
'cmdNewCall - New Call
'cmdNewChecklist - New Checklist
'cmdNewEvt - New Event
'cmdNewMtg - New Meeting
'cmdNewNote - New Note
'cmdNewOutline - New Outline
'cmdNewRec - New Recording
'cmdNewTodo - New Todo
'cmdPrefs - * opens Dash Board Prefs app
'cmdQuit - * quits Dash Board app
'cmdReboot - Reset Newton
'cmdRegister - Register Dash Board
'cmdRotate180 - Rotate 180°
'cmdRotate90L - Rotate 90° Left
'cmdRotate90R - Rotate 90° Right
'cmdSDS0 - Default Internal
'cmdSDS1 - Default Card 1
'cmdSDS2 - Default Card 2
'cmdSleep - Sleep
'cmdUmnute - Volume Unmute
'cmdWhoWhere - Set Owner/Worksite

Dash Board Scripter's Guide - 13 -

The DashBoardInsertText() Method

This method inserts a text string at the caret. It works in any standard text entry
view, such as the Notes app, and also works with views based on the
protoTXView, used in the Works app.

aScriptFrame:DashBoardInsertText(theString)

aScriptFrame - the script frame. You can just use :DashBoardInsertText
without explicitly specifying this.

theString - a text string. This is the text that will be inserted at the caret.

The return value of this method is undefined.

example of the DashBoardInsertText() method:
local myText :=
"John Doe
123 Main Street
New York, NY 12345";
:DashBoardInsertText(myText);

The example will insert John Doe's address in the current caret view.

Dash Board Scripter's Guide - 14 -

The DashBoardFakePNButton()
Method

This method simulates a tap on the special button bar icon that ships with
PowerNames, from SilverWARE (http://www.silverware.com).

aScriptFrame:DashBoardFakePNButton(whereTapped, howTapped)

aScriptFrame - the script frame. You can just use :DashBoardInsertText
without explicitly specifying this.

whereTapped – which part of the icon to simulate a tap on. Use ‘icon to simulate
tapping on the icon, or ‘text to simulate tapping on the text beneath the icon.

howTapped – specifies whether the simulated tap is just a normal tap, or a tap-
and-hold. Use ‘tap to simulate a normal tap, or ‘hold to simulate tapping and
holding the pen down.

The return value of this method is undefined.

example of the DashBoardFakePNButton() method:

:DashBoardFakePNButton(‘icon, ‘hold);

The example will simulate tapping and holding the pen down on the icon of the
PowerNames button.

Dash Board Scripter's Guide - 15 -

ABOUT IMPORTING SCRIPTS
Dash Board can import scripts written for GestureLaunch 3, from Innovative
Computer Solutions (http://www.newts.com). Future versions of Dash Board may
be able to import other types of scripts.

There are some important issues involving importing scripts that all Dash Board
Scripters should be aware of.

Scripts, like any other software, may be copyrighted and their use may be subject
to licensing limitations. While many scripts are publicly available and free of
charge, some scripts are commercial software. You should ensure that you are
licensed to use any scripts that you import into Dash Board. Copyrighted scripts
which accompany other software packages may not be used without properly
purchasing and obtaining a license from the vendor. Importing scripts which you
are not legally entitled to use constitutes software piracy.

In particular, you need to be a registered user of GestureLaunch in order to use
scripts written by ICS for use with that program. GestureLaunch for Dash Board
is a Dash Board-compatible version of the program, that not only allows you to
use all ICS scripts, but also provides powerful new scripting features that allow a
great deal more flexibility than Dash Board alone. As of this writing, it is available
from ICS for only $10.00. For more information, see the ICS web site at:

http://www.newts.com

Secondly, not all imported scripts will work in Dash Board. For example, some
GestureLaunch 3 scripts rely on special features of GestureLaunch 3 which are
not supported by Dash Board.

Dash Board tries to check imported scripts and determine if it uses methods or
features of GestureLaunch 3 which Dash Board does not support. If it does,
Dash Board will insert appropriate warnings in the comments preceding the script
code, to let you know of possible problems.

While this is helpful, the process is not foolproof. Scripts may need to be modified
to work with Dash Board. Some trial and error experimentation may be
necessary.

Dash Board Scripter's Guide - 16 -

ABOUT EXPORTING SCRIPTS
Dash Board can now export scripts, as well as importing them. There are two
types of Export.

Notes (Text) Export
To export a script or scripts to the notes program, go to the Scripts panel of the
Dash Board Prefs app. Select the script(s) you want to export, and tap the Export
button. Choose "Export to Notes" from the popup menu.

This will create a new note in the Notes app for each exported script. The
contents of the note will be the script code.

Package Export
If you have the PackMan utility installed, you can export your scripts to a Newton
package. This allows you to easily and conveniently share your scripts with
others. You can create Newton packages which will install your scripts on
another user's Newton device, and easily distribute them on the internet via the
web, FTP, etc. If you are serious about Dash Board scripting, you need
PackMan.

PackMan is produced by Innovative Computer Solutions (http://www.newts.com).

Export Tips
It is a good idea to double check that your scripts have a suitable unique ID and
accurate description in the Info field, if you wish to share them with others. To
check, tap the Edit Info button in the Dash Board script editor.

Dash Board Scripter's Guide - 17 -

FEEDBACK
We're always happy to hear suggestions for what we can do to improve your
Dash Board scripting experience. Feel free to email us your ideas and
suggestions at support@fivespeed.com.

Also, please check out the Dash Board Scripting page
(http://www.fivespeed.com/dashboard/scripting.html) for more information about
scripting with Dash Board. We will be periodically updating the site with new tips
and information for Dash Board scripters.

	Title Page
	About This Book
	Intro to Scripting with Dash Board
	Using Inherited Dash Board Methods
	DashBoardDoDialog()
	DashBoardGetScriptResult()
	DashBoardDoSpecialItem()
	DashBoardInsertText()
	DashBoardFakePNButton
	 Importing Scripts
	Exporting Scripts
	Feedback

